Some satellites revolve in orbits higher than those normally considered low-earth, but at altitudes lower than the geostationary level of 22,300 miles. These intermediate “birds” are called medium-earth-orbit (MEO) satellites.
A MEO satellite takes several hours to complete each orbit. MEO satellites operate in fleets, in a manner similar to the way LEO satellites are deployed. Because the average MEO altitude is higher than the average LEO altitude, each “bird” can cover a larger region on the surface at any given time.
A fleet of MEO satellites can be smaller than a comparable fleet of LEO satellites, and still provide continuous, worldwide communications. The orbits of GEO satellites are essentially perfect circles, and most LEO satellites orbit in near-perfect circles.
But MEO satellites often have elongated, or elliptical, orbits. The point of lowest altitude is called perigee; the point of greatest altitude is called apogee. The apogee can be, and often is, much greater than the perigee.
Such a satellite orbits at a speed that depends on its altitude. The lower the altitude, the faster the satellite moves. A satellite with an elliptical orbit crosses the sky rapidly when it is near perigee, and slowly when it is near apogee; it is easiest to use when its apogee is high above the horizon, because then it stays in the visible sky for a long time.
Every time a MEO satellite completes one orbit, the earth rotates beneath it. The rotation of the earth need not, and usually does not, correspond to the orbital period of the satellite. Therefore, successive apogees for a MEO satellite occur over different points on the earth’s surface. This makes the tracking of individual satellites a complicated business, requiring computers programmed with accurate orbital data.
For a MEO system to be effective in providing worldwide coverage without localized periodic blackouts, the orbits must be diverse, yet coordinated in a precise and predictable way. In addition, there must be enough satellites so that each point on the earth is always on a line of sight with one or more satellites, and preferably, there should be at least one “bird” in sight near apogee at all times.
No comments:
Post a Comment